CARBANION OF O-ETHYL S-(TETRAHYDRO-2-OXO-3-FURANYL) THIOCARBONATE: A NEW REAGENT FOR THE STEREOSELECTIVE SYNTHESIS OF α -ALKYLIDENE- γ -BUTYROLACTONES FROM CARBONYL COMPOUNDS

Kazuhiko TANAKA, * Nobuyuki YAMAGISHI, Hideki UNEME,
Rikuhei TANIKAGA, and Aritsune KAJI
Department of Chemistry, Faculty of Science,
Kyoto University, Sakyo-ku, Kyoto 606

The lithium salt of $\mathcal{O}-\text{ethyl}$ S-(tetrahydro-2-oxo-3-furanyl) thiocarbonate was found to be an efficient reagent for the stereoselective synthesis of α -alkylidene- γ -butyrolactones from carbonyl compounds.

Synthetic routes to α -alkylidene- γ -butyrolactones have received considerable attention in recent years 1) because of their biological activity. 2) Since carbonyl compounds are readily available in organic synthesis, direct procedure for the preparation of α -alkylidene- γ -butyrolactones from carbonyl compounds is very attractive. There are, however, only a few reports on the one-step synthesis of these compounds. 3) We wish to report here the new synthetic methodology for stereoselective synthesis of α -alkylidene- γ -butyrolactones using sulfur-stabilized carbanion. A difficulty encountered in the reaction of the above carbanion lies in the lack of nucleophilic reactivity toward carbonyl groups. For example, it is reported that anion II of α -methylthio- γ -butyrolactone (I) did not react with cyclohexanone. 4)

We have found that the carbanion IV derived from \mathcal{O} -ethyl S-(tetrahydro-2-oxo-3-furanyl) dithiocarbonate (III) is a convenient reagent for the preparation of α -alkylidene- γ -butyrolactones from carbonyl compounds.

VII

Treatment of III (20 mmol) with lithium diisopropylamide (22 mmol) at -78°C in dry THF (40 ml) produced a yellow solution of anion IV. After 40 min, a solution of benzaldehyde (22 mmol) in 3 ml of dry THF was added dropwise during 2 min. After stirring for 2 h at -78°C, the bath was removed and the reaction mixture allowed to warm to room temperature for 1 h, during which time the solution became deep red. Aqueous workup gave a 60% yield of (E)- α -benzylidene- γ -butyrolactone, mp 117.5-118.5°C (lit, 3b) mp 118.5°C). Unfortunately, an attempt to purify the starting material III by vacuum distillation failed due to its decomposition. In order to avoid the redundant operation by column chromatography, the corresponding monothiocarbonate V was prepared in 91% yield by the addition of triethylamine to a solution of α -mercapto- γ -butyrolactone $^{5)}$ and ethyl chloroformate in benzene. Compound V was easily purified by distillation, bp 122°C/0.6 mmHg. Therefore, this monothiocarbonate is the preferred reagent for synthetic purpose.

Table 1. Effect of lithium amide structure on product yields

Yield of VII ^{b)}		
53	a)	Reactions were carried
54		out on a 20 mmol scale.
39	b)	Isolated yields based on V.
84	c)	N,N,N',N'-Tetramethyleth- ylenediamine.
	53 54 39	53 a) 54 b)

Among the various amide examined, lithium diethylamide (LDEA) was found to be the most effective base for the generation of anion VI from V as indicated in

Table 1. The generation and reaction of VI with electrophiles is as follows. Into a solution of LDEA (22 mmol) in dry THF (40 ml) at $-78\,^{\circ}$ C was added dropwise monothicarbonate V (20 mmol) in 5 ml of dry THF. After stirring for 1 h at $-78\,^{\circ}$ C, aldehyde (25 mmol) in 3 ml of dry THF was added over 2 min. After a reaction time of 2 h at $-78\,^{\circ}$ C, the cooling bath was removed and the mixture stirred for an additional 1 h. Workup and purification gave mainly E-geometry of α -alkylidene- γ -butyrolactone in a high yield as shown in Table 2.

Table 2. Reaction of carbanion VI with carbonyl compounds

Carbonyl compound	Product	Yield ^{a)} %	E/Z ^{b)}
Benzaldehyde	Ph	84	100/0
Propionaldehyde	H	78	94/6
2-Furaldehyde	H	75	100/0
Heptanal	O H	83	94/6
2-Methylbutyraldehyde	O H	93	85/15
Cyclohexanecarboxaldehyde	H	82	92/8
(E)-2-Hexenal	O H	76	91/9
Acetone	\	75	
Cyclohexanone		65	

a) Yield of isolated product. b) Determined by NMR and GLPC.

The effectiveness of this novel anion as a powerful nucleophile was demonstrated for the reaction with ketones. These findings indicate the anion VI to be a highly efficient reagent for the stereoselective introduction of a new carbon-carbon double bond on the α -position of γ -butyrolactone under mild conditions, where the desulfurizing agents such as heavy metals or trivalent phosphine compounds are not required. 6

Research on the scope and limitation of these reactions is currently being investigated.

References and Notes

- 1) R. B. Grammill, C. A. Wilson, and T. A. Bryson, Synth. Commun., 5, 245 (1975), and references cited therein.
- 2) W. J. McGraw, U. S. Patent, 2,624,723 (1953); Chem. Abstr., 47, 11232h (1953).
- 3) a) D. C. Lankin, M. R. Scalise, J. C. Schmidt, and H. Zimmer, J. Heterocycl. Chem., <u>11</u>, 631 (1974).
 - b) T. Minami, I. Niki, and T. Agawa, J. Org. Chem., 39, 3236 (1974).
 - c) P. Grieco, C-L. J. Wang, and S. D. Burke, J. Chem. Soc., Chem. Commun., 1975, 537.
- 4) B. M. Trost and H. C. Arndt, J. Org. Chem., 38, 3140 (1973).
- 5) G. Fucks, Ark. Kemi, 26, 111 (1966); Chem. Abstr., 66, 28363g (1967).
- 6) For the mechanistic pathway of this reaction, see K. Tanaka, R. Tanikaga, and A. Kaji, Chem. Lett., 1976, 917.

(Received December 15, 1977)